Pha NGUYEN
Type-to-Track

Type-to-Track: Retrieve Any Object via Prompt-based Tracking

One of the recent trends in vision problems is to use natural language captions to describe the objects of interest. This approach can overcome some limitations of traditional methods that rely on bounding boxes or category annotations. This paper introduces a novel paradigm for Multiple Object Tracking called Type-to-Track, which allows users to track objects in videos by typing natural language descriptions. We present a new dataset for that Grounded Multiple Object Tracking task, called GroOT, that contains videos with various types of objects and their corresponding textual captions describing their appearance and action in detail. Additionally, we introduce two new evaluation protocols and formulate evaluation metrics specifically for this task. We develop a new efficient method that models a transformer-based eMbed-ENcoDE-extRact framework (MENDER) using the third-order tensor decomposition. The experiments in five scenarios show that our MENDER approach outperforms another two-stage design in terms of accuracy and efficiency, up to 14.7% accuracy and 4× speed faster.

Project Page | Paper | Poster | Video
UTOPIA

UTOPIA: Unconstrained Tracking Objects without Preliminary Examination via Cross-Domain Adaptation

Multiple Object Tracking (MOT) aims to find bounding boxes and identities of targeted objects in consecutive video frames. While fully-supervised MOT methods have achieved high accuracy on existing datasets, they cannot generalize well on a newly obtained dataset or a new unseen domain. In this work, we first address the MOT problem from the cross-domain point of view, imitating the process of new data acquisition in practice. Then, a new cross-domain MOT adaptation from existing datasets is proposed without any pre-defined human knowledge in understanding and modeling objects. It can also learn and update itself from the target data feedback. The intensive experiments are designed on four challenging settings, including MOTSynth to MOT17, MOT17 to MOT20, MOT17 to VisDrone, and MOT17 to DanceTrack. We then prove the adaptability of the proposed self-supervised learning strategy. The experiments also show superior performance on tracking metrics MOTA and IDF1, compared to fully supervised, unsupervised, and self-supervised state-of-the-art methods.

Paper
SPARTAN

SoGAR: Self-supervised Spatiotemporal Attention-based Social Group Activity Recognition

This paper introduces a novel approach to Social Group Activity Recognition (SoGAR) using Self-supervised Transformers network that can effectively utilize unlabeled video data. To extract spatio-temporal information, we created local and global views with varying frame rates. Our self-supervised objective ensures that features extracted from contrasting views of the same video were consistent across spatio-temporal domains. Our proposed approach is efficient in using transformer-based encoders to alleviate the weakly supervised setting of group activity recognition. By leveraging the benefits of transformer models, our approach can model long-term relationships along spatio-temporal dimensions. Our proposed SoGAR method achieved state-of-the-art results on three group activity recognition benchmarks, namely JRDB-PAR, NBA, and Volleyball datasets, surpassing the current numbers in terms of F1-score, MCA, and MPCA metrics.

Paper
SPARTAN

SPARTAN: Self-supervised Spatiotemporal Transformers Approach to Group Activity Recognition

In this paper, we propose a new, simple, and effective Self-supervised Spatio-temporal Transformers (SPARTAN) approach to Group Activity Recognition (GAR) using unlabeled video data. Given a video, we create local and global Spatio-temporal views with varying spatial patch sizes and frame rates. The proposed self-supervised objective aims to match the features of these contrasting views representing the same video to be consistent with the variations in spatiotemporal domains. To the best of our knowledge, the proposed mechanism is one of the first works to alleviate the weakly supervised setting of GAR using the encoders in video transformers. Furthermore, using the advantage of transformer models, our proposed approach supports long-term relationship modeling along spatio-temporal dimensions. The proposed SPARTAN approach performs well on two group activity recognition benchmarks, including NBA and Volleyball datasets, by surpassing the state-of-the-art results by a significant margin in terms of MCA and MPCA metrics.

Paper
SAGA-TrackNet

Multi-Camera Multi-Object Tracking on the Move via Single-Stage Global Association Approach

The development of autonomous vehicles generates a tremendous demand for a low-cost solution with a complete set of camera sensors capturing the environment around the car. It is essential for object detection and tracking to address these new challenges in multi-camera settings. In order to address these challenges, this work introduces novel Single-Stage Global Association Tracking approaches to associate one or more detection from multi-cameras with tracked objects. These approaches aim to solve fragment-tracking issues caused by inconsistent 3D object detection. Moreover, our models also improve the detection accuracy of the standard vision-based 3D object detectors in the nuScenes detection challenge. The experimental results on the nuScenes dataset demonstrate the benefits of the proposed method by outperforming prior vision-based tracking methods in multi-camera settings.

Paper
MC-MOT

Depth Perspective-aware Multiple Object Tracking

This paper aims to tackle Multiple Object Tracking (MOT), an important problem in computer vision but remains challenging due to many practical issues, especially occlusions. Indeed, we propose a new real-time Depth Perspective-aware Multiple Object Tracking (DP-MOT) approach to tackle the occlusion problem in MOT. A simple yet efficient Subject-Ordered Depth Estimation (SODE) is first proposed to automatically order the depth positions of detected subjects in a 2D scene in an unsupervised manner. Using the output from SODE, a new Active pseudo-3D Kalman filter, a simple but effective extension of Kalman filter with dynamic control variables, is then proposed to dynamically update the movement of objects. In addition, a new high-order association approach is presented in the data association step to incorporate first-order and second-order relationships between the detected objects. The proposed approach consistently achieves state-of-the-art performance compared to recent MOT methods on standard MOT benchmarks.

Paper
MC-MOT

Multi-Camera Multiple 3D Object Tracking on the Move for Autonomous Vehicles

The development of autonomous vehicles provides an opportunity to have a complete set of camera sensors capturing the environment around the car. Thus, it is important for object detection and tracking to address new challenges, such as achieving consistent results across views of cameras. To address these challenges, this work presents a new Global Association Graph Model with Link Prediction approach to predict existing tracklets location and link detections with tracklets via cross-attention motion modeling and appearance re-identification. This approach aims at solving issues caused by inconsistent 3D object detection. Moreover, our model exploits to improve the detection accuracy of a standard 3D object detector in the nuScenes detection challenge. The experimental results on the nuScenes dataset demonstrate the benefits of the proposed method to produce SOTA performance on the existing vision-based tracking dataset.

Paper | Poster | Video
Crowd Counting

Self-supervised Domain Adaptation in Crowd Counting

Self-training crowd counting has not been attentively explored though it is one of the important challenges in computer vision. In practice, the fully supervised methods usually require an intensive resource of manual annotation. In order to address this challenge, this work introduces a new approach to utilize existing datasets with ground truth to produce more robust predictions on unlabeled datasets, named domain adaptation, in crowd counting. While the network is trained with labeled data, samples without labels from the target domain are also added to the training process. In this process, the entropy map is computed and minimized in addition to the adversarial training process designed in parallel.

Experiments on Shanghaitech, UCF_CC_50, and UCF-QNRF datasets prove a more generalized improvement of our method over the other state-of-the-arts in the cross-domain setting.

Project Page | Paper
DyGLIP

DyGLIP: A Dynamic Graph Model with Link Prediction for Accurate Multi-Camera Multiple Object Tracking

Multi-Camera Multiple Object Tracking (MC-MOT) is a significant computer vision problem due to its emerging applicability in several real-world applications. Despite a large number of existing works, solving the data association problem in any MC-MOT pipeline is arguably one of the most challenging tasks. Developing a robust MC-MOT system, however, is still highly challenging due to many practical issues such as inconsistent lighting conditions, varying object movement patterns, or the trajectory occlusions of the objects between the cameras. To address these problems, this work, therefore, proposes a new Dynamic Graph Model with Link Prediction (DyGLIP) approach to solve the data association task. Compared to existing methods, our new model offers several advantages, including better feature representations and the ability to recover from lost tracks during camera transitions. Moreover, our model works gracefully regardless of the overlapping ratios between the cameras. Experimental results show that we outperform existing MC-MOT algorithms by a large margin on several practical datasets.

Notably, our model works favorably on online settings but can be extended to an incremental approach for large-scale datasets.

Paper | Poster | Video | Code