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Abstract—Object tracking is a fundamental domain in com-
puter vision, especially multiple human tracking, which is an
important task to solve many key problems, including traffic
counting, behavior analysis of in-store customers. It is very
difficult to handle these problems in heavily crowded scenes
because of pedestrian occlusions. Recent research works focus
on tracking-by-detection, which breaks tracking problem down
into two steps: detect objects then associate them with groups by
motion or features. Recent object detectors still do not have the
accuracy-speed balance and do not work perfectly in a crowded
area. In this paper, we propose a new method for human tracking,
which is less depended on the instability of the object detector
and inherits the success of Siamese Visual Tracking in recent
years. While Siamese-family trackers work on a single object,
we extend the problem by proposing a strategy that manages
across multiple tracker and combines a human detector as a
semi-supervisor for tracker location correction. Additionally, the
detector-tracker associating strategy adapts the transformation of
human poses and the acquisition of new pedestrians during the
tracking process. Our method outperforms the state-of-the-art
algorithms on our crowded scenes dataset.

Index Terms—Siamese Network, Multiple Object Tracking,
Computer Vision

I. INTRODUCTION

The problem of object detection, localization, and track-

ing has got significant attention in different research areas.

Modern trackers could be roughly divided into two branches.

The first one is tracking-by-detection, which has become the

leading paradigm of multiple object tracking. SORT [1] and

DeepSORT [2] are popular methods for online tracking algo-

rithms. The simple idea is to employ a frame-by-frame data

association using the Hungarian method with an association

metric that measures the deep feature distance and bounding

box overlap. However, they need an object detector that works

all the time.

The other branch is template-matching, which uses a tem-

plate of the target object and tries to match it to the regions

of the later images. Several works in the template-matching

method focus not only on deeper and wider networks, but

also on searching as proposing regions to improve tracking

robustness and accuracy on a single object. SiamFC [3] uses

template embedding as the correlation filter for the search

image to allow real-time performance. SiamRPN [4] uses

region proposal networks that have been used by Faster R-

Fig. 1. Sample of our NgocHa Retail Store dataset. All frames are marked
by the bounding box representing different ID.

CNN [5] to extract proposals from the correlation feature

maps. Siamese instance search tracking (SINT) [6] trains a

Siamese Network using the margin contrastive loss for the

representation of features. By using these extracted features,

a learned matching function compares the initial patch of

the target image with the later patches that are centered at

the previously detected location. The patch with the highest

positive score is considered to be matching. GOTURN [7]

centers around the previous location and regresses the next

position of the bounding box, assuming that the object does

not move too far [8].

Inspired by SORT [1] and DeepSORT [2], we extend the

target of Siamese Tracker into multiple object, especially

on human, by adding the matching stage periodically after

tracking. This approach can be applied to all common types

of variations in appearance from tracking examples.

II. MULTIPLE PEDESTRIAN TRACKING WITH SIAMESE

TRACKER

In this section, we present our strategy to track pedestrians

in detail.

A. Simple Feature Updating

Since human pose changes all the time, we adopt a simple

feature update step to an existing tracker when there is a new

detected position. At the jth frame, the detect stage returns the

cropped image of the ith object (denoted as zij). Let φ(zij)
denotes the deep convolutional appearance template from the

Siamese Network and Zij = φ(zij). In order to adapt object

appearance, we compute φ(zij) and update the new template
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Fig. 2. The detector-tracker associating strategy.

feature with a small coefficient to balance two parts whenever

it gets the detector to correct. This action may not always be

continuous.

Ẑij =

{
Zij , j = 0

γẐij−1 + (1− γ)Zij , j > 0
(1)

The update function is a very simple linear function by

using previous appearance templates [9]. The update rate γ is

assigned to a fixed small value in range [0, 1], following the

assumption that the human pose changes quite much. During

our experiments, we found that setting γ in the mid-range

gives an excellent result.

B. Trackers and detections associating strategy

At any tracking step, the Siamese Network takes xij as

the search field that is samples around the previous position

of the target and then predicts the location of the target in

the current frame. We employ the Region Proposal Network

generation and selection framework that is first introduced in

Faster-RCNN [5] and also used in SiamRPN [4]. Let function

ζ(Ẑij , φ(xij)) denotes for the correlation function, which is

computed on both two frameworks and returns result in two

branches:

REG,CLS = ζ(Ẑij , φ(xij)) (2)

Let bounding box regression branch denotes as REG,

the classification branch denotes as CLS, and the number

of anchor box is k. The REG branch returns the output

vector whose shape is (21, 21, 4, k), each point whose shape

is (21, 21, 4) represents the distance between bounding boxes

generated and a single relative anchor box. Similarly, the CLS

branch returns the output vector whose shape is (21, 21, 2, k)
and each point in the CLS branch has (21, 21, 2) shape,

representing the positive score (denoted as ps) and negative

score (denoted as ns) of these bounding boxes.

REG = {(dxαβκ, dyαβκ, dwαβκ, dhαβκ)}

CLS = {(psαβκ, nsαβκ)}
(3)

where α, β ∈ [0, 21), κ ∈ [0, k).
From the highest positive score index in the CLS branch,

we get the next location of the ith object in the REG branch

as the same index as the score:

A,B,K = argmax(softmax(CLS)[:, :, 0, :])

tl = convert boundingbox(REG[A,B, :,K])

ts = softmax(CLS)[A,B, 0,K]

(4)

where tl is the tracker location and ts is the tracker score. The

0 index in the CLS branch represents the positive scores ps.

We use the softmax function to normalize each pair (ps, ns)
into a vector of two values that follows a probability distribu-

tion whose total sums up to 1 and convert the distance with

the corresponding anchor to the bounding box of the target.

We map a collection of objects whose each object t is tracked

as mentioned above in parallel, combine to set T and denote

|T | = n.

Besides, the object detector detects object bounding boxes

(denotes as set D and |D| = m) in the following format:

D = {(xα, yα, wα, hα)|α ∈ [0,m)}. To match each pair from

the tracker predictions set T and detections set D, we compute

an intersection over union association cost:

c(tl, d) = 1−
tl ∩ d

tl ∪ d
(5)



TABLE I
PERFORMANCE COMPARISONS ON TWO DATASETS

NgocHa Retail Store

Methods
frame interval = 1 frame interval = 10

IDF1 IDP IDR MOTA MOTP IDF1 IDP IDR MOTA MOTP

GOTURN 22.0 22.0 22.0 -4.5 0.349 - - - - -
SiamRPN 25.9 25.9 25.9 -25.1 0.330 - - - - -
DeepSORT 64.0 62.6 65.5 94.9 0.033 53.1 52.0 54.2 84.5 0.084

Modified SiamRPN (Ours) 69.8 69.9 69.8 99.8 0.000 56.1 56.5 55.7 95.6 0.117

TownCentre

Methods
frame interval = 1 frame interval = 10

IDF1 IDP IDR MOTA MOTP IDF1 IDP IDR MOTA MOTP

GOTURN 28.1 28.2 27.9 -2.1 0.343 - - - - -
SiamRPN 39.1 39.1 39.1 -12.5 0.376 - - - - -
DeepSORT 80.5 76.5 85.0 87.7 0.019 70.4 69.3 71.6 76.6 0.104

Modified SiamRPN (Ours) 85.4 85.8 85.0 98.6 0.000 79.9 81.8 78.2 89.4 0.167

where t ∈ T and d ∈ D.

The global cost matrix can be considered to formulate as:

C(T,D)n×m =




c(tl1, d1) c(tl1, d2) · · · c(tl1, dm)
c(tl2, d1) c(tl2, d2) · · · c(tl2, dm)

...
...

. . .
...

c(tln, d1) c(tln, d2) · · · c(tln, dm)




= (c(tlα, dβ)) ∈ R
n×m

(6)

Additionally, the positive score is considered as an impor-

tant factor to prioritize predictions. We select the subset of

trackers {t ∈ T |ts = score} that have the same score and un-

matched subset of detections D̂ that have not been associated

with any trackers in the previous matches. Selected score is

descending sorted from max({ts|t ∈ T}) to min({ts|t ∈ T}).
Then the sub cost matrices between each pair of two sets at

considered score can be formulated as:

C({t ∈ T |ts = score}, D̂)

for score ∈ descending sort({ts|t ∈ T})
(7)

In the implementation, we linearly rescaled values tlα
into a new arbitrary range 0 to 100 so that values can be

observed easily. After computing sub cost matrices, we also

mark certain impossible pairings. By separating global cost

matching problem into several sub cost matches, we reduce the

computation cost of linear assignment problem from O(|T |3)
to O(a3) +O(b3) + . . . where a+ b+ . . . = n. The values of

a, b, . . . depend on the degree of occlusion of data scenes.

A linear sum assignment problem solver for dense matrices

is applied to get suitable pairs on each matrix. After getting

matched pairs, we update detections to trackers as described

in (1). On the other hand, trackers that are not matched with

any detections are considered to be occluded and still predict

shortly until the correction is made or after a long time. Also,

the unmatched observations will be initialized as new trackers.

The strategy process flow is depicted in Fig. 2. The Track

stage leverages the Siamese Tracker’s work and is along with

the Update phase to adapt human pose change by a simple

update function. Ẑij = Zij +Zij−1 is a simple representation

of (1). In implementation, we compute the accumulated Ẑij−1

Punishment
GT Tracker Kalman Filter

Fig. 3. A punishment occurs when the tracker suddenly changes direction.

instead of Zij−1. Each object in T set associates with each

object in D set by (5). The global cost matrix, which may

contain impossible match pairs, is split into many sub-matrices

and assignment sum cost is optimized on these matrices.

Compatible pairs, which are marked by X letter in Fig. 2,

will be used to update the status of the objects.

C. Kalman Filter Penalty

We break the assignment problem in a global cost matrix

into a series of sub-matrices as described in II-B. Additionally,

with some uncertainty or inaccuracy in prediction, the rescaled

score is multiplied by a penalty to decrease the priority of

suddenly direction changed trackers, also expand the score

range. We use a simple Kalman Filter with the assumption that

those objects are moving at the constant velocity motion. We

take the bounding box center position as direct observation

of the object state. The distance between the Kalman Filter

prediction p = (x, y) and Siamese Tracker prediction center

center(tl) = (x, y) over the frame size (w, h), which map to

the interval [0, 1], is computed as the punishment weight:

t̂s = ts × (1− norm(
center(tl)− p

image size
)) (8)

The punishment is illustrated in Fig. 3. For simplicity,

we plot ground truth trajectory with solid curve and the

predictions with dashed ones. The gray area indicates the

matching threshold [10]. The red curve represents the Siamese

Tracker, and the blue one is the Kalman Filter output.
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matching. Best viewed on color display.

D. Training phase

Since all pretrained Siamese convolutional appearance net-

works (denoted as φ) are trained on a large number of

object types, we retrain Siamese convolutional network on the

Market-1501 [11] dataset with AlexNet [12]. Each positive

pair is generated by 2-permutations of n intra-trackers, where

n is the length of a tracker. From 751 trackers, 593876
positive pairs are generated with a large number of human

poses, cloth colors. Negative samples are also picked by

randomly choosing two people. Data augmentation methods

are considered applicable, we apply horizontal flip, grayscale,

blur, shift scale, and color distortions on both template images

and search images.

We use the loss function in Faster R-CNN [5] to train the

network on both the classification and the regression branch.

The loss for classification is the cross-entropy loss and smooth

L1 loss for regression. Finally, we optimize the two losses

combination:

L = Lcls + λLreg (9)

III. EXPERIMENTS

A. State-of-the-art algorithms comparison

We evaluate our proposed method on two datasets. NgocHa

Retail Store, which is recorded at retail shopping sites and

focuses on heavily occluded humans and unpredictable move-

ment trajectories. Sample is shown as Fig. 1. This dataset

contains 38015 human bounding boxes within 7580 images.

And TownCentre [13] dataset is recorded in a busy town cen-

ter street. Up to 230 pedestrians were tracked simultaneously

in 4500 frames, contains 71460 bounding boxes. Also, we

only focus on our matching framework by using ground truth

bounding boxes as input. We further compare our method

results with the original SiamRPN [4], DeepSORT [2] and

GOTURN [7] tracking methods on the MOT metrics [10] as

shown in Table I.

Seeing detector as a semi-advisor, we evaluate the tracker

predictions within a frame interval then get the matching
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Fig. 7. Qualitative comparison result on two methods. Red bounding boxes are DeepSORT’s visualization and green bounding boxes are the visualization of
our method. Our method performs tracking better than DeepSORT after a complete occlusion. The 9th ID changes to the 11th ID, compares with the 8th ID,
whose prediction is more stable. Best viewed on color display.

strategy as the correction, so it only occurs on detection-

based methods. Since the original idea of GOTURN [7] and

SiamRPN [4] only works on a single object, we have to add

some modifications to make it work on multiple object. By

adding the initialization phase based on the first time new

object appears from the ground truth and letting it track till

the end without any correction, we see it change ID easily in

crowded environments and it is vulnerable at occlusion scenes.

Thanks to the deep convolutional feature of Siamese Net-

work, our method can perform not only a better quantitative

result on ID precision, ID recall, ID F1-score, but also better

qualitative comparison1, as demonstrated in Fig. 7.

B. Time complexity

We benchmark the assignment time complexity of our

cascade matching strategies on the TownCentre [13] dataset

as described in II-B. In Fig. 4 and Fig. 5, the blue area and

the blue square mark represent the matching strategy which

applies with (7) and Kalman Filter penalty (8), the red area and

red triangle mark represent the strategy applies with (7) but

does not use penalty (8), and the black area and black dot use

the naivest approach, which simply assigns on the global cost

matrix (6) without penalty (8). The time complexity, which is

counted by the number of loops, significantly decreases from

the black to the red to the blue. The number of iterations of the

highest density point in the blue area is less than the number

1Full tracking visualization by DeepSORT [2] is uploaded at https://youtu.
be/Jp-mjmrO0uU, and our modified Siamese Tracker is at https://youtu.be/
OeN46gICi2w.

of two others. However, this results to a trade-off for a slight

drop of F1-score as in Fig. 5. In this work, we only benchmark

on small dataset. On a large and extreme occlusion dataset, the

gap could be wider.

C. The update rate observation

The update rate γ in (1) is crucial to learn a good appearance

for human tracking. In Fig. 6, we observe the change of F1-

score by the increase of γ in the range [0, 1]. By choosing

a value which makes two parts balance and focusing on new

features, we achieve the highest F1-score on NgocHa Retail

Store at γ = 0.4. And with the dataset whose human moving

trajectories are stable and linear as in the TownCentre [13]

dataset, the γ coefficient does not affect to excess, the best

result is also obtained when γ is in the mid-range. Oppositely,

F1-score decreases dramatically when γ reaches 1. It means

that the template feature is only initialized for the first time,

and it never gets updated later.

IV. CONCLUSION AND FUTURE WORK

With a good method to track in-store customers, these

questions are easier to approach: What time is the store most

crowded? How much time do customers spend? And how will

these affect sales? We focus in this work not only on the

real in-store data but also on the efficient method to handle

the Siamese Tracker and the object detector in a crowded

environment. During the process, the feature extraction branch

is trained by a custom human database Market-1501 [11].

Meanwhile, our tracking system shows good performance in

tracking precision and recall.

https://youtu.be/Jp-mjmrO0uU
https://youtu.be/Jp-mjmrO0uU
https://youtu.be/OeN46gICi2w
https://youtu.be/OeN46gICi2w


We remark that the object deep feature might be an impor-

tant factor to be considered when matching tracker prediction

with detection besides the overlapping area. A new branch

in the network architecture with a fuse loss function training

may be used to perform appearance representation besides

classification and regression branch.

In this paper, we trained our backbone on the Market-1501

[11] dataset, which contains cropped pedestrian images. By

collecting more dataset with full-frame availability, we are

hopeful that the regression branch can perform better results.

Since several deeper and wider networks are created and

boost not only the neural network depth but also the per-

formance of all the computer vision tasks, we also regard

them as major improvements in tracking problem. But with

the limitation of resources, we only present AlexNet [12]

performance in this work. In the future, we will attempt to

take full advantage of the neural network.
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